Symplectic scheme and the Poynting vector in the reverse time migration

Edvaldo Araujo ${ }^{1}$, Reynam Pestana ${ }^{2}$ and Adriano Santos ${ }^{3}$
${ }^{1}$ CPGG/UFBA and Capes, Salvador, Bahia, Brazil
${ }^{2}$ CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil
${ }^{3}$ CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil

$$
\begin{aligned}
& \text { 83rd Annual Meeting - SEG } \\
& \text { 22-27 September } 2013 \\
& \text { Houston, TX - USA }
\end{aligned}
$$

- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
-

Main goals

- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:

- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:
- Vector Poynting computation;
-
-
-
-
- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:
- Vector Poynting computation;
- Wavefield separation;
-
-
-
- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:
- Vector Poynting computation;
- Wavefield separation;
- Boundary condition problem;
-
-
- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:
- Vector Poynting computation;
- Wavefield separation;
- Boundary condition problem;
- Common imaging gathers (CIGs);
-
- To develop a numerical solution for the acoustic wave equation and obtain the wavefield and its time derivative at the same time step.
- The proposed method applications:
- Vector Poynting computation;
- Wavefield separation;
- Boundary condition problem;
- Common imaging gathers (CIGs);
- RTM low frequency noise attenuation.
- In mathematics, a sympletic integrator is a numerical integration scheme for a specific group of differential equations related with classical mechanics and sympletic geometric (Yoshida, 1990).
-
- In mathematics, a sympletic integrator is a numerical integration scheme for a specific group of differential equations related with classical mechanics and sympletic geometric (Yoshida, 1990).
- These schemes are widely used in molecular dynamics, celestial mechanics and other areas of physics.
-
- In mathematics, a sympletic integrator is a numerical integration scheme for a specific group of differential equations related with classical mechanics and sympletic geometric (Yoshida, 1990).
- These schemes are widely used in molecular dynamics, celestial mechanics and other areas of physics.
- Sympletic schemes can be also used to calculate a numerical solution of the wave equation and its first time derivate.

Wave equation - Hamiltonian system

The constant density acoustic wave equation

$$
\frac{\partial^{2} P}{\partial t^{2}}=c^{2} \nabla^{2} P
$$

Hamiltonian formulation of the wave equation

$$
\begin{align*}
\frac{\partial P}{\partial t} & =Q \\
\frac{\partial Q}{\partial t} & =c^{2} \nabla^{2} P \tag{2}
\end{align*}
$$

Symplectic integrators

Leapfrog (Bonomi et. al, 1998)

$$
\begin{align*}
Q^{\left(n+\frac{1}{3}\right)} & =Q^{(n)}+\frac{1}{6} \Delta t c^{2} \nabla^{2} P^{(n)}, \\
P^{\left(n+\frac{1}{2}\right)} & =P^{(n)}+\frac{1}{2} \Delta t Q^{\left(n+\frac{1}{3}\right)}, \\
Q^{\left(n+\frac{2}{3}\right)} & =Q^{\left(n+\frac{1}{3}\right)}+\frac{2}{3} \Delta t c^{2} \nabla^{2} P^{\left(n+\frac{1}{2}\right)}, \\
P^{(n+1)} & =P^{\left(n+\frac{1}{2}\right)}+\frac{1}{2} \Delta t Q^{\left(n+\frac{2}{3}\right)}, \\
Q^{(n+1)} & =Q^{\left(n+\frac{2}{3}\right)}+\frac{1}{6} \Delta t c^{2} \nabla^{2} P^{(n+1)} . \tag{3}
\end{align*}
$$

Symplectic integrators

Stömer-Verlet method (Chen, 2009)

$$
\begin{align*}
Q^{\left(n+\frac{1}{2}\right)} & =Q^{(n)}+\frac{1}{2} \Delta t G\left(P^{(n)}\right) \\
P^{(n+1)} & =P^{(n)}+\Delta t Q^{\left(n+\frac{1}{2}\right)} \\
Q^{(n+1)} & =Q^{\left(n+\frac{1}{2}\right)}+\frac{1}{2} \Delta t G\left(P^{(n+1)}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(P^{(n)}\right)=-c^{2} F^{-1}\left[k^{2} F\left(P^{(n)}\right)\right]+2 \sum_{j=2}^{J} \frac{(\Delta t)^{2 j-2}}{(2 j)!} \frac{\partial^{2 j} P^{(n)}}{\partial t^{2 j}} \tag{5}
\end{equation*}
$$

Necessary and sufficient condition (Skell et al., 1997).

$$
\left[\begin{array}{cc}
\frac{\partial P^{(n+1)}}{\partial P^{(n)}} & \frac{\partial P^{(n+1)}}{\partial Q^{(n)}} \tag{6}\\
\frac{\partial Q^{(n+1)}}{\partial P^{(n)}} & \frac{\partial Q^{(n+1)}}{\partial Q^{(n)}}
\end{array}\right]^{T}[\mathrm{~J}]\left[\begin{array}{cc}
\frac{\partial P^{(n+1)}}{\partial P^{(n)}} & \frac{\partial P^{(n+1)}}{\partial Q^{(n)}} \\
\frac{\partial Q^{(n+1)}}{\partial P^{(n)}} & \frac{\partial Q^{(n+1)}}{\partial Q^{(n)}}
\end{array}\right]=[\mathrm{J}]
$$

Symplectic matrix

$$
J=\left[\begin{array}{cc}
0 & I \tag{7}\\
-l & 0
\end{array}\right]
$$

Wave equation - REM solution

Analytical solution of equation (1) (Pestana and Stoffa, 2010)

$$
\begin{equation*}
P(t+\Delta t)+P(t-\Delta t)=2 \cos (L \Delta t) P(t), \quad\left(L^{2}=-c^{2} \nabla^{2}\right) \tag{8}
\end{equation*}
$$

Using the REM (Kosloff et al., 1989) in (8)

$$
\begin{equation*}
P(t-\Delta t)+P(t+\Delta t)=2 \sum_{k=0}^{M} C_{2 k} J_{2 k}(\Delta t R) Q_{2 k}\left(\frac{i L}{R}\right) P(t), \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
R=c_{\max } \sqrt{\left(\frac{\pi}{\Delta x}\right)^{2}+\left(\frac{\pi}{\Delta y}\right)^{2}+\left(\frac{\pi}{\Delta z}\right)^{2}} \tag{10}
\end{equation*}
$$

The summation can be safely truncated with a $M>R \Delta t$ (Tal-Ezer, 1987).

Symplectic integrators and REM

Hamiltonian formulation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=Q \quad \text { and } \quad \frac{\partial Q}{\partial t}=H(P) \tag{11}
\end{equation*}
$$

Stömer-Verlet-REM

$$
\begin{align*}
P^{(n+1)} & =P^{(n)}+\Delta t Q^{(n)}+\frac{\Delta t^{2}}{2} H\left(P^{(n)}\right) \\
Q^{(n+1)} & =Q^{(n)}+\frac{\Delta t}{2}\left[H\left(P^{(n)}\right)+H\left(P^{(n+1)}\right)\right] \tag{12}
\end{align*}
$$

where:

$$
\begin{equation*}
H\left(P^{(n)}\right)=\frac{2}{(\Delta t)^{2}}\left[\sum_{k=0}^{M} C_{2 k} J_{2 k}(\Delta t R) Q_{2 k}\left(\frac{i L}{R}\right)-1\right] P^{(n)} \tag{13}
\end{equation*}
$$

Poynting vector applications

Poynting vector

$$
\begin{equation*}
\vec{J}=-Q \nabla P \tag{14}
\end{equation*}
$$

Wave propagation angle

$$
\begin{equation*}
\theta=\arctan \left(\frac{J_{z}}{J_{x}}\right) \tag{15}
\end{equation*}
$$

Separated wavefields: Upgoing, downgoing and the original wavefield (left to right)

BP Model and snapshot of J_{x} (top) and snapshot of J_{z} (botton)

Poynting vector applications

Separated wavefields: Unpgoing and downgoing (top) and the original wavefield (botton)

Transparent boundary when the energy leaves $\partial \Omega$ and reflective boundary when the energy returns to $\partial \Omega$ (Bonomi e Enrico, 2001).

Qreverse (Bonomi e Enrico, 2001)

For $(x, y, z) \in \partial \Omega$ where $\vec{J} . \hat{n}<0$
Do $Q(x, y, z, t) \leftarrow-Q(x, y, z, t)$.

Qreverse - Snapshots at different instants

Qreverse - Snapshots at different instants

Qreverse - Trace inside the model

Seismic trace without qreverse (a); with taper (b) and qreverse (c)

- In RTM, the cross-correlation imaging condition, which is given by:

$$
\begin{equation*}
I_{c c}(\mathbf{x})=\int P_{F}(\mathbf{x}, t) P_{B}(\mathbf{x}, t) d t \tag{18}
\end{equation*}
$$

is used in practice and is often preferable due to stability reasons.

- Imaging condition proposed by Bulcão et al. (2007):

$$
\begin{equation*}
I_{c}(\mathbf{x})=\sum_{t=0}^{t_{f}} P_{F_{d}}(\mathbf{x}, t) P_{B_{d}}(\mathbf{x}, t) \tag{19}
\end{equation*}
$$

- To avoid the cross-correlation of the downgoing waves with the upgoing waves, which is the cause of the low frequency noise.

Sigsbee2A velocity model

Pre-stack reverse time migration - SIGSBEE2A model

Migration result of the Sigsbee2A dataset - No filtering

Pre-stack reverse time migration - Sigsbee2A model

Migration result of the Sigsbee2A dataset - Using downgoing source and downgoing receivers parts.

Pre-stack reverse time migration - Sigsbee2A model

Migration result of the Sigsbee2A dataset - downgoing parts plus high-pass filtering.

- Cross-correlation imaging condition:

$$
I_{c c}(\mathbf{x})=\int P_{F}(\mathbf{x}, t) P_{B}(\mathbf{x}, t) d t
$$

- Based on the relationship between inversion and imaging (Luo et al., 2009; Zhou et al., 2009; Whitmore and Crawley, 2012):

$$
\begin{align*}
I_{i i}(\mathbf{x}) & =\frac{1}{v^{2}(\mathbf{x})} \int \frac{\partial}{\partial t} P_{F}(\mathbf{x}, t) \frac{\partial}{\partial t} P_{B}(\mathbf{x}, t) d t \\
& +\int \nabla P_{F}(\mathbf{x}, t) . \nabla P_{B}(\mathbf{x}, t) d t \tag{20}
\end{align*}
$$

Pre-stack RTM result - Marmousi model

Gradient image condition.

Time derivative image condition.

Pre-stack RTM result - Marmousi model

Inverse scattering image condition

Reflection angle \& Common imaging gathers (CIGs)

Reflection angle:

$$
\begin{gather*}
\cos (\psi)=\frac{\overrightarrow{J_{d}} \cdot \overrightarrow{J_{u}}}{\left|\overrightarrow{J_{d}}\right|\left|\overrightarrow{J_{u}}\right|} \cdot \tag{21}\\
\psi=2 \xi \quad(\xi \text { - reflection angle) } . \tag{22}
\end{gather*}
$$

Source Poynting vector $\left(\vec{J}_{d}\right)$ and receiver Poynting vector $\left(\vec{J}_{u}\right)$.

Pres-stack RTM using CIGs

Distance (km)

Migration result of the 2004 BP 2D dataset using the CIGs reflection angles from 0° to 90°.

Pre-stack RTM using CIGs

Distance (km)

Migration result of the 2004 BP 2D dataset using the CIGs reflection angles from 61° to 90°.

Pre-stack RTM using CIGs

Distance (km)

Migration result of the 2004 BP 2D dataset using the CIGs reflection angles from 0° to 60°.

CIGs in the reflection angle domain from the 2004 BP dataset

Reflection angles from 0° to 60°

Some common image gathers from the 2004 BP dataset in the reflection angle domain.

Pre-stack RTM using CIG's - 2004 BP 2D

Final migration result obtained by summing the CIGs reflection angles from 0° to 60° and the CIGs reflection angles from 61° to 90° after high-pass filtering.

The new symplectic numerical scheme combined with REM proved to be a good alternative to the following applications:

- Reverse time migration
- Vector Poynting computation;
- Wavefield separation;
- Boundary condition problem;
- Common imaging gathers (CIGs);
- RTM low frequency noise attenuation.

This research was supported by CNPq and INCT-GP/CNPq. The facility support from CPGG/UFBA is also acknowledged.

Conselho Nacional de Desenvolvimento Científico e Tecnológico

INCT-GP

