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o To develop a numerical solution for the acoustic wave
equation and obtain the wavefield and its time derivative at
the same time step.
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goals

o The proposed method applications:

© 06 06 0 o

3/42



o The proposed method applications:

o Vector Poynting computation;

© 06 o0 o

4/42



o The proposed method applications:

o Vector Poynting computation;
o Wavefield separation;
o

Qo
*]

5/42



o The proposed method applications:

Vector Poynting computation;
Wavefield separation;
Boundary condition problem;

© 06 06 0 o

6/42



o The proposed method applications:

Vector Poynting computation;
Wavefield separation;

Boundary condition problem;
Common imaging gathers (CIGs);

© 06 06 0 o

7/42



o The proposed method applications:

Vector Poynting computation;
Wavefield separation;

Boundary condition problem;
Common imaging gathers (CIGs);
RTM low frequency noise attenuation.

© 06 06 0 o

8/42



o In mathematics, a sympletic integrator is a numerical
integration scheme for a specific group of differential
equations related with classical mechanics and sympletic
geometric (Yoshida, 1990).
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o These schemes are widely used in molecular dynamics,
celestial mechanics and other areas of physics.
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o Sympletic schemes can be also used to calculate a numerical
solution of the wave equation and its first time derivate.
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Wave equation - Hamiltonian system
The constant density acoustic wave equation

PP ,
W =C V P,
(1)
Hamiltonian formulation of the wave equation
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mplectic integrators

Leapfrog (Bonomi et. al, 1998)

Q(n-l—%) _ Q(n) + %AtC2V2P(n),
plrts) — M”+%Am“%%
QH@ZZQW@+§mgw¢Ha,

p(ntl) _ ﬂw@+%Aww%y

Q(n+1) — Q(n—i-%) 4 %AtC2V2P(n+1) ) (3)
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symplectic integrators

Stomer-Verlet method (Chen, 2009)

QU+y) — Q(")Jr%AtG(P(”)),
pr+l)  —  p() ¢ AQ(n+3)
1
QUrt)  — Q(n+%)+§Atg(p(n+1))_ (4)
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symplectic integrators

Necessary and sufficient condition (Skell et al., 1997).

8P(n+1) 8P("+1) T ap(n—i—l) 8P(n+1)
oP(n) oQ(n oP(n) oQ(n)
J =[J
aQ(r+1)  HQn+l) aQ(n+1)  gQ(n+1)
oP(m  9Qn) oP()  §Q(n)
(6)

Symplectic matrix
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e equation - REM solution

Analytical solution of equation (1) (Pestana and Stoffa, 2010)

P(t + At) + P(t — At) = 2cos(LAL)P(t), (L?> = —c*V?) (8)

Using the REM (Kosloff et al., 1989) in (8)

M
P(t—At)+ P(t+At) —22 CokJak( AtR)sz( )P(t) (9)
k=0

T2 7\ 2 T2
R= Cmax\/ () * (A_y) +(z3) (10)
The summation can be safely truncated with a M > RAt
(Tal-Ezer, 1987).

where

16 /42



ymplectic integrators and REM
Hamiltonian formulation

oP 0Q

Stomer-Verlet-REM

2
pWﬂ::PW+AwW+%;mMm’

Q(n+1) _ Q(n) + %[H(P(")) + H(p(n+1))] . (12)

where:

M ,
H(P(n)) _ (Azt)z kz: C2kJ2k(AtR)Q2k (%) = 1] P(”) . (13)
=0
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Poynting vector applications

Poynting vector

J=-QvpP (14)
6 = arctan (#) . (15)
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Separated wavefields: Upgoing, downgoing and the original wavefield

(left to right) )0



ynting vector applications
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BP Model and snau;)shot of Jy (top) and snapshot of J, (botton)
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’oynting vector applications

Separated wavefields: Upgoing and downgoing (top) and the original
wavefield (botton) 20/42



gverse - Boundary condition problem

SN 7 ==y

Transparent boundary when the energy leaves 92 and reflective boundary
when the energy returns to 9Q (Bonomi e Enrico, 2001).

Qreverse (Bonomi e Enrico, 2001)

For (x,y,z) € 9Q where J.A <0 (16)
Do Q(x,y,2,t) < —Q(x,y,2,t). (17)
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Qreverse - Snapshots at different instants
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Qreverse - Snapshots at different instants
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se - [race inside the model
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Seismic trace without qgreverse (a); with taper (b) and qreverse (c)
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e migration (RTM)

o In RTM, the cross-correlation imaging condition, which is
given by:
lec(x) = /PF(x, t) Pg(x,t)dt (18)

is used in practice and is often preferable due to stability reasons.

o Imaging condition proposed by Bulcdo et al. (2007):
ZPFd t) Pg,(x,t) (19)

o To avoid the cross-correlation of the downgoing waves with
the upgoing waves, which is the cause of the low frequency
noise.
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sbee?A velocity model
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everse time migration - SIGSBEE2A model

Depth (km)

Distance (km)

Migration result of the Sigsbee?A dataset - No filtering
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gstack reverse time migration - Sigsbee2A model

Distance (km)

Depth (km)

Migration result of the Sigsbee2A dataset - Using downgoing source
and downgoing receivers parts.
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Pre-stack reverse time migration - Sigsbee2A model

Distance (km)
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Depth (km)

Migration result of the Sigsbee?A dataset - downgoing parts plus
high-pass filtering.
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onditions for RTM

o Cross-correlation imaging condition:
lee(x) = / Pr(x. t) Pa(x, ) dt

o Based on the relationship between inversion and imaging (Luo
et al., 2009; Zhou et al., 2009; Whitmore and Crawley, 2012):

hi(x) = V%(X) / %Pp(x,t) %PB(X, ) dt

+ /VPF(x, t). VPg(x, t) dt (20)
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M result - Marmousi model

Depth (km)
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Gradient image condition.
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ack RTM result - Marmousi model

Distance (km)

Depth (km)
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Time derivative image condition.
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Pre-stack RTM result - Marmousi model

Distance (km)

Inverse scattering image condition
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sflection angle & Common imaging gathers (CIGs)

Reflection angle:

Jd J
cos(1)) = (21)
| Jal[Jul
1 =2& (& reflection angle) . (22)
Jg Ju
13

Source Poynting vector (Jg) and receiver Poynting vector (J,,).
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> velocity model
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Pres-stack RTM using ClGs
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Migration result of the 2004 BP 2D dataset using the CIGs reflection
angles from 0° to 90°.
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Pre-stack RTM using ClGs

Distance (km)

Depth (km)

Migration result of the 2004 BP 2D dataset using the CIGs reflection
angles from 61° to 90°.
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Pre-stack RTM using ClGs

Distance (km)

Depth (km)

Migration result of the 2004 BP 2D dataset using the CIGs reflection
angles from 0° to 60°.
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IGShin the reflection angle domain from the 2004 BP

ataset

Reflection angles from 0° to 60°

Depth (km)

Some common image gathers from the 2004 BP dataset in the reflection
angle domain.
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Prestack RTM using CIG's - 2004 BP 2D

Distance (km)

Final migration result obtained by summing the CIGs reflection angles
from 0° to 60° and the CIGs reflection angles from 61° to 90° after
high-pass filtering.




The new symplectic numerical scheme combined with REM proved
to be a good alternative to the following applications:

Reverse time migration
Vector Poynting computation;
Wavefield separation;
Boundary condition problem;

Common imaging gathers (CIGs);
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RTM low frequency noise attenuation.
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